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General notation. We use [d] to denote the set {i ∈ N | i ≤ d}. We let ι :=
√
−1 denote the

imaginary unit. We use s ∼unif. S to denote a uniform sample from the set S. When S is a subset
of T clear from context, we let Sc := T \S denote its complement. We denote vectors in lowercase
boldface letters. When v is a vector, we refer to its ith coordinate by vi, and if the vector has a
subscript, e.g., it is a variable vt, we denote its ith coordinate by [vt]i. We use h, &, and . to
hide universal constants, e.g. x . y means there is a universal constant C such that x ≤ Cy. We
use 1d and 0d to denote the all-ones and all-zeroes vectors of dimension d respectively. We use Õ
to hide polylogarithmic factors in problem parameters for simplicity.1 We let supp(v) denote the
support of a vector v ∈ Rd, i.e., the subset of coordinates i ∈ [d] where vi 6= 0. For x ∈ R, we let
sign(x) := 1 if x ≥ 0, and otherwise we let sign(x) := −1. We let the ith standard basis vector in
Rd be denoted by ei, i.e., the 0-1 vector with supp(ei) = {i}.

Matrices. We denote matrices in uppercase boldface letters. We let Id denote the d× d identity
matrix, and 0m×n be the m × n all-zeroes matrix. We let Sd×d be the set of symmetric d × d
matrices, which we equip with �, the Loewner partial ordering (i.e., M � N implies N −M is
positive semidefinite). We also let Sd×d

�0 denote the subset of d× d positive semidefinite matrices,
and Sd×d

�0 are the d × d positive definite matrices. The number of nonzero entries of a matrix
M is denoted nnz(M). We let Tmv(M) be the time it takes to compute Mv for an arbitrary
vector v;2 note that Tmv(M) = O(nnz(M)), and if M ∈ Rm×n is given by a rank-k decomposition
M = UV>, we have Tmv(M) = O((m+n)k). We let ω ≈ 2.372 be the current matrix multiplication
exponent, i.e., such that we can multiply two d × d matrices in O(dω) time. When M ∈ Sd×d

has eigendecomposition M = UΛU> and f is a real-valued function whose domain contains the
spectrum of M, we overload f(M) := Uf(Λ)U> where f(Λ) is applied entrywise on the diagonal.
We reserve ‖·‖op, ‖·‖tr, and ‖·‖F for the operator norm, trace norm, and Frobenius norm of a
matrix (a.k.a. the ∞-, 1-, and 2-Schatten norms). When T is a k-way tensor operating on vector
inputs {v1,v2, . . . ,vk}, we write T[v1,v2, . . . ,vk] to mean the resulting scalar from this operation.
When we drop some set of ` ∈ [k] of the inputs (with ordering clear from context), we mean the
`-way tensor operating on the remaining inputs, e.g., T[v1] is a (k − 1)-way tensor. For example,
M[u,v] = u>Mv when M is a matrix, and M[u] = M>u. We let Span(M) denote the span of
the columns of M, and rank(M) denote its rank.

Norms. We let ‖·‖ denote a norm on Rd. For a norm ‖·‖ on Rd, we let ‖·‖∗ denote the dual norm.
When applied to a vector or matrix argument, ‖·‖p denotes the `p or Schatten-p norm respectively.
For v ∈ Rd and r > 0, if ‖·‖ is a norm on Rd, we let B‖·‖(v, r) := {v′ ∈ Rd | ‖v′ − v‖ ≤ r} denote
the associated norm ball around v. When ‖·‖ is omitted, we always assume ‖·‖ = ‖·‖2, and when
v is omitted, we always assume v = 0d. For a matrix M ∈ Rm×n and p, q ≥ 1, we define

‖M‖p→q := max
‖v‖p≤1

‖Mv‖q .

Sets. We let χS be the 0-∞ indicator of a set S, such that

χS(x) =

{
0 x ∈ S
∞ x 6∈ S

.

1This usage of Õ (without declaring what polylogarithmic factors are hidden) is somewhat controversial in the
community, but it significantly saves on space for some very hairy theorem statements. I promise I will declare if
anything particularly nefarious is being hidden by Õ; otherwise, it should be reasonable from context clues.

2If M ∈ Rn×d, we usually assume for simplicity that Tmv(M) = Ω(n + d), as we must at least process the input
and write down the output. If M has all-zero columns or rows, we can first drop them and reduce the dimension.
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For a set S ⊆ Rd and λ ∈ R, we write λS := {λv | v ∈ S}, Sc := {v ∈ Rd | v 6∈ S}, and Vol(S)
denotes the volume (Lebesgue measure) of S in Rd. We denote the Minkowski sum of sets by ⊕,
i.e., A⊕B := {v | v = a + b,a ∈ A,b ∈ B}. We use Conv(S) to mean the convex hull of a set S,
and relint(S) to mean the relative interior of S. For S ⊆ Rd, we let ΠS(v) := argminv′∈S ‖v − v′‖2
denote the Euclidean projection of v to S.

Functions. When f is a function on some decision variable x, we sometimes use · in place of
the argument x to denote the function itself, e.g., ‖·‖ denotes the function which, when evaluated
at x, returns ‖x‖. When integrating a function f without specifying a domain of integration, we
always mean the entire domain of f . We use ∇k to denote the kth derivative tensor of a k-times
differentiable multivariate function, e.g., ∇f is the gradient of differentiable f : Rd → R. In one
dimension this is denoted f (k).

Probability. Expectations of random variables, denoted E, are always taken with respect to all
randomness used to define the variable unless otherwise specified. For a scalar random variable Z
we let Var[Z] := E[Z2] − (EZ)2 denote its variance. When E is an event on a probability space
clear from context, we let IE denote the random 0-1 variable which is 1 iff E occurs. When µ is a
probability density, we write x ∼ µ to denote a sample from this density. We denote the support of
a distribution D, i.e., all values samples from D can take on, by supp(D). When f is a nonnegative
integrable function, we write µ ∝ f to mean the density taking on values f

Z , where Z =
∫
f(x)dx

is the normalizing constant. We let N (µ,Σ) denote the multivariate Gaussian distribution with
specified mean µ ∈ Rd and covariance Σ ∈ Sd×d

�0 . For two distributions P,Q, we let Γ(P,Q) denote
the set of couplings of P and Q.
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