Notation for CS395T: Continuous Algorithms

Kevin Tian

General notation. We use [d] to denote the set $\{i \in \mathbb{N} \mid i \leq d\}$. We let $\iota := \sqrt{-1}$ denote the imaginary unit. We use $s \sim_{\text{unif.}} S$ to denote a uniform sample from the set S. When S is a subset of T clear from context, we let $S^c := T \setminus S$ denote its complement. We denote vectors in lowercase boldface letters. When **v** is a vector, we refer to its i^{th} coordinate by \mathbf{v}_i , and if the vector has a subscript, e.g., it is a variable \mathbf{v}_t , we denote its ith coordinate by $[\mathbf{v}_t]_i$. We use $\approx \approx \approx$, \approx , and \lesssim to hide universal constants, e.g. $x \lesssim y$ means there is a universal constant C such that $x \leq Cy$. We use 1_d and 0_d to denote the all-ones and all-zeroes vectors of dimension d respectively. We use \tilde{O} to hide polylogarithmic factors in problem parameters for simplicity.¹ We let supp (v) denote the support of a vector $\mathbf{v} \in \mathbb{R}^d$, i.e., the subset of coordinates $i \in [d]$ where $\mathbf{v}_i \neq 0$. For $x \in \mathbb{R}$, we let $sign(x) := 1$ if $x \geq 0$, and otherwise we let $sign(x) := -1$. We let the ith standard basis vector in \mathbb{R}^d be denoted by \mathbf{e}_i , i.e., the 0-1 vector with supp $(\mathbf{e}_i) = \{i\}$.

Matrices. We denote matrices in uppercase boldface letters. We let I_d denote the $d \times d$ identity matrix, and $\mathbf{0}_{m\times n}$ be the $m \times n$ all-zeroes matrix. We let $\mathbb{S}^{d\times d}$ be the set of symmetric $d \times d$ matrices, which we equip with \preceq , the Loewner partial ordering (i.e., M \preceq N implies N – M is positive semidefinite). We also let $\mathbb{S}_{\geq 0}^{d \times d}$ denote the subset of $d \times d$ positive semidefinite matrices, and $\mathbb{S}_{\succ 0}^{d \times d}$ are the $d \times d$ positive definite matrices. The number of nonzero entries of a matrix M is denoted nnz(M). We let $\mathcal{T}_{mv}(M)$ be the time it takes to compute Mv for an arbitrary vector \mathbf{v} ², note that $\mathcal{T}_{mv}(\mathbf{M}) = O(\text{nnz}(\mathbf{M}))$, and if $\mathbf{M} \in \mathbb{R}^{m \times n}$ is given by a rank-k decomposition $\mathbf{M} = \mathbf{U}\mathbf{V}^{\top}$, we have $\mathcal{T}_{mv}(\mathbf{M}) = O((m+n)k)$. We let $\omega \approx 2.372$ be the current matrix multiplication exponent, i.e., such that we can multiply two $d \times d$ matrices in $O(d^{\omega})$ time. When $\mathbf{M} \in \mathbb{S}^{d \times d}$ has eigendecomposition $M = U\Lambda U^{\top}$ and f is a real-valued function whose domain contains the spectrum of M, we overload $f(M) := Uf(\Lambda)U^{\top}$ where $f(\Lambda)$ is applied entrywise on the diagonal. We reserve $\lVert \cdot \rVert_{\text{op}}$, $\lVert \cdot \rVert_{\text{tr}}$, and $\lVert \cdot \rVert_{\text{F}}$ for the operator norm, trace norm, and Frobenius norm of a matrix (a.k.a. the ∞ -, 1-, and 2-Schatten norms). When **T** is a k-way tensor operating on vector inputs $\{v_1, v_2, \ldots, v_k\}$, we write $T[v_1, v_2, \ldots, v_k]$ to mean the resulting scalar from this operation. When we drop some set of $\ell \in [k]$ of the inputs (with ordering clear from context), we mean the ℓ -way tensor operating on the remaining inputs, e.g., $\mathbf{T}[v_1]$ is a $(k-1)$ -way tensor. For example, $M[u, v] = u^{\top}Mv$ when M is a matrix, and $M[u] = M^{\top}u$. We let Span(M) denote the span of the columns of M , and rank (M) denote its rank.

Norms. We let $\|\cdot\|$ denote a norm on \mathbb{R}^d . For a norm $\|\cdot\|$ on \mathbb{R}^d , we let $\|\cdot\|_*$ denote the dual norm. When applied to a vector or matrix argument, $\left\|\cdot\right\|_p$ denotes the ℓ_p or Schatten-p norm respectively. For $\mathbf{v} \in \mathbb{R}^d$ and $r > 0$, if $\|\cdot\|$ is a norm on \mathbb{R}^d , we let $\mathbb{B}_{\|\cdot\|}(\mathbf{v}, r) := {\mathbf{v}' \in \mathbb{R}^d \mid \|\mathbf{v}' - \mathbf{v}\| \leq r}$ denote the associated norm ball around **v**. When $\|\cdot\|$ is omitted, we always assume $\|\cdot\| = \|\cdot\|_2$, and when **v** is omitted, we always assume $\mathbf{v} = \mathbf{0}_d$. For a matrix $\mathbf{M} \in \mathbb{R}^{m \times n}$ and $p, q \geq 1$, we define

$$
\left\| \mathbf{M} \right\|_{p \to q} := \max_{\left\| \mathbf{v} \right\|_p \leq 1} \left\| \mathbf{M} \mathbf{v} \right\|_q.
$$

Sets. We let χ_S be the 0- ∞ indicator of a set S, such that

$$
\chi_S(x) = \begin{cases} 0 & x \in S \\ \infty & x \notin S \end{cases}.
$$

¹This usage of \tilde{O} (without declaring what polylogarithmic factors are hidden) is somewhat controversial in the community, but it significantly saves on space for some very hairy theorem statements. I promise I will declare if anything particularly nefarious is being hidden by \tilde{O} ; otherwise, it should be reasonable from context clues.

²If $\mathbf{M} \in \mathbb{R}^{n \times d}$, we usually assume for simplicity that $\mathcal{T}_{\text{mv}}(\mathbf{M}) = \Omega(n+d)$, as we must at least process the input and write down the output. If M has all-zero columns or rows, we can first drop them and reduce the dimension.

For a set $S \subseteq \mathbb{R}^d$ and $\lambda \in \mathbb{R}$, we write $\lambda S := {\lambda \mathbf{v} \mid \mathbf{v} \in S}$, $S^c := {\mathbf{v} \in \mathbb{R}^d \mid \mathbf{v} \notin S}$, and $Vol(S)$ denotes the volume (Lebesgue measure) of S in \mathbb{R}^d . We denote the Minkowski sum of sets by \oplus , i.e., $A \oplus B := \{v \mid v = a + b, a \in A, b \in B\}$. We use $Conv(S)$ to mean the convex hull of a set S, and relint(S) to mean the relative interior of S. For $S \subseteq \mathbb{R}^d$, we let $\mathbf{\Pi}_S(\mathbf{v}) := \operatorname{argmin}_{\mathbf{v}' \in S} \|\mathbf{v} - \mathbf{v}'\|_2$ denote the Euclidean projection of v to S.

Functions. When f is a function on some decision variable x, we sometimes use \cdot in place of the argument x to denote the function itself, e.g., $\|\cdot\|$ denotes the function which, when evaluated at x, returns $\|\mathbf{x}\|$. When integrating a function f without specifying a domain of integration, we always mean the entire domain of f. We use ∇^k to denote the k^{th} derivative tensor of a k-times differentiable multivariate function, e.g., ∇f is the gradient of differentiable $f : \mathbb{R}^d \to \mathbb{R}$. In one dimension this is denoted $f^{(k)}$.

Probability. Expectations of random variables, denoted **E**, are always taken with respect to all randomness used to define the variable unless otherwise specified. For a scalar random variable Z we let $\text{Var}[Z] := \mathbb{E}[Z^2] - (\mathbb{E}Z)^2$ denote its variance. When $\mathcal E$ is an event on a probability space clear from context, we let $\mathbb{I}_{\mathcal{E}}$ denote the random 0-1 variable which is 1 iff \mathcal{E} occurs. When μ is a probability density, we write $x \sim \mu$ to denote a sample from this density. We denote the support of a distribution \mathcal{D} , i.e., all values samples from $\mathcal D$ can take on, by supp (\mathcal{D}) . When f is a nonnegative integrable function, we write $\mu \propto f$ to mean the density taking on values $\frac{f}{Z}$, where $Z = \int f(x) dx$ is the normalizing constant. We let $\mathcal{N}(\mu, \Sigma)$ denote the multivariate Gaussian distribution with specified mean $\mu \in \mathbb{R}^d$ and covariance $\Sigma \in \mathbb{S}_{\succeq 0}^{d \times d}$. For two distributions P, Q , we let $\Gamma(P, Q)$ denote the set of couplings of P and Q .